extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).C22 = D4:2S3 | φ: C22/C1 → C22 ⊆ Aut C2xC6 | 24 | 4- | (C2xC6).C2^2 | 48,39 |
(C2xC6).2C22 = C3xC4oD4 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | 2 | (C2xC6).2C2^2 | 48,47 |
(C2xC6).3C22 = C4xDic3 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).3C2^2 | 48,11 |
(C2xC6).4C22 = Dic3:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).4C2^2 | 48,12 |
(C2xC6).5C22 = C4:Dic3 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).5C2^2 | 48,13 |
(C2xC6).6C22 = D6:C4 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | | (C2xC6).6C2^2 | 48,14 |
(C2xC6).7C22 = C6.D4 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | | (C2xC6).7C2^2 | 48,19 |
(C2xC6).8C22 = C2xDic6 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).8C2^2 | 48,34 |
(C2xC6).9C22 = S3xC2xC4 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | | (C2xC6).9C2^2 | 48,35 |
(C2xC6).10C22 = C2xD12 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | | (C2xC6).10C2^2 | 48,36 |
(C2xC6).11C22 = C4oD12 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 24 | 2 | (C2xC6).11C2^2 | 48,37 |
(C2xC6).12C22 = C22xDic3 | φ: C22/C2 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).12C2^2 | 48,42 |
(C2xC6).13C22 = C3xC22:C4 | central extension (φ=1) | 24 | | (C2xC6).13C2^2 | 48,21 |
(C2xC6).14C22 = C3xC4:C4 | central extension (φ=1) | 48 | | (C2xC6).14C2^2 | 48,22 |
(C2xC6).15C22 = C6xQ8 | central extension (φ=1) | 48 | | (C2xC6).15C2^2 | 48,46 |