Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C22

Direct product G=NxQ with N=C2xC6 and Q=C22
dρLabelID
C23xC648C2^3xC648,52

Semidirect products G=N:Q with N=C2xC6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC6):C22 = S3xD4φ: C22/C1C22 ⊆ Aut C2xC6124+(C2xC6):C2^248,38
(C2xC6):2C22 = C6xD4φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6):2C2^248,45
(C2xC6):3C22 = C2xC3:D4φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6):3C2^248,43
(C2xC6):4C22 = S3xC23φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6):4C2^248,51

Non-split extensions G=N.Q with N=C2xC6 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC6).C22 = D4:2S3φ: C22/C1C22 ⊆ Aut C2xC6244-(C2xC6).C2^248,39
(C2xC6).2C22 = C3xC4oD4φ: C22/C2C2 ⊆ Aut C2xC6242(C2xC6).2C2^248,47
(C2xC6).3C22 = C4xDic3φ: C22/C2C2 ⊆ Aut C2xC648(C2xC6).3C2^248,11
(C2xC6).4C22 = Dic3:C4φ: C22/C2C2 ⊆ Aut C2xC648(C2xC6).4C2^248,12
(C2xC6).5C22 = C4:Dic3φ: C22/C2C2 ⊆ Aut C2xC648(C2xC6).5C2^248,13
(C2xC6).6C22 = D6:C4φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6).6C2^248,14
(C2xC6).7C22 = C6.D4φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6).7C2^248,19
(C2xC6).8C22 = C2xDic6φ: C22/C2C2 ⊆ Aut C2xC648(C2xC6).8C2^248,34
(C2xC6).9C22 = S3xC2xC4φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6).9C2^248,35
(C2xC6).10C22 = C2xD12φ: C22/C2C2 ⊆ Aut C2xC624(C2xC6).10C2^248,36
(C2xC6).11C22 = C4oD12φ: C22/C2C2 ⊆ Aut C2xC6242(C2xC6).11C2^248,37
(C2xC6).12C22 = C22xDic3φ: C22/C2C2 ⊆ Aut C2xC648(C2xC6).12C2^248,42
(C2xC6).13C22 = C3xC22:C4central extension (φ=1)24(C2xC6).13C2^248,21
(C2xC6).14C22 = C3xC4:C4central extension (φ=1)48(C2xC6).14C2^248,22
(C2xC6).15C22 = C6xQ8central extension (φ=1)48(C2xC6).15C2^248,46

׿
x
:
Z
F
o
wr
Q
<